Envi-Analysis@Bay Window Tower House
環境解析@出窓の塔居


■ Project information

Project name; Bay Window Tower House
Client; Takaaki Fuji + Yuko Fuji
Classification; Detached house
Architect; Takaaki Fuji + Yuko Fuji
Specifications; Site area: 43.91㎡, Building area: 25.39㎡, Total floor area: 84.35㎡, Steel structure, 3rd floor above ground, B1 floor, 1st floor of tower building

■プロジェクト情報

プロジェクト名;住宅 [出窓の塔居]
事業主体名;藤 貴彰+藤 悠子
分類;戸建て住宅
アーキテクト;藤 貴彰+藤 悠子
仕様;敷地面積:43.91㎡、建築面積:25.39㎡、延床面積:84.35㎡、鉄骨造、地上3階・地下1階・塔屋1階

‘Overview; A house with bay windows on each floor where two Couples, two children, and two cats live in the tower of the window. Choose a place where each person can live comfortably and build a good relationship with the existing homes around them. The building form creates a vacant lot in the surrounding area and does not rely on mechanical control. To create that environment, we are simulating ventilation and daylighting and trying to insulate the outside with carbonized cork. ‘’
(Quoted from the Good Design Award WEB page)

‘‘概要;夫婦2人・こども2人・猫2匹が住む、各階全周出窓の住宅。

出窓の塔居では、個々人が快適な場所を選び取りながら生活をしていくこと、 周囲の既存住宅と良好な関係を築く為に周囲に空地を生む建物形態とすること、 機械制御に頼らない環境とする為、通風・採光をシミュレーションすると共に、炭化コルクよる外断熱を試みている。‘‘

(引用、グッドデザイン賞WEBページより)

©Masao Nishikawa

©Masao Nishikawa

“Design points

Designed a home and office in a small area in the city center where old and new streets coexist. We thought that we should leave our hands and create a comfortable place to live, not a house, where we can continue to live even if the purpose or owner changes.

Simulations also confirmed that the octagonal building shape has a less adverse effect on the surrounding wind environment than generally rectangular buildings. To create a cosy place, we observed the behaviour of the microclimate includes the surroundings by simulation. Instead of constructing the space itself, I consciously embodied every behaviour of a casual person and tried to raise the spaces.

The three types of windows have different light conditions, wind and heat are In areas where wind and heat are most effective, and heat loaded becomes large in midsummer or midwinter the exterior material is lightweight, has high heat insulation, and has sound absorption. The external insulation uses carbonized cork that does not immortalize, reducing the heat load. (Quoted from the Good Design Award WEB page) ‘’

“デザインのポイント

新旧の街並みが混在する都心の狭小地に、自邸兼事務所を設計。自分たちの手を離れ、用途や持ち主が変わっても生き続けられる、家でなく、居心地の良い居場所をつくるべきだと考えた。

八角形の建物形状は、通常の矩形の建物と比べて周囲の風環境への悪影響が小さいこともシミュレーションによって確認。

居心地の良い場所を作るために、シミュレーションにて周囲も含めた微気候の振る舞いを観察。空間そのものを構築するのではなく、何気ない人の振る舞いの一つ一つを意識的に具現化し、空間が立ち上がることを試みた。

3種の窓を光・風・熱の条件が最も効果的になるように配置をし、真夏や真冬に熱負荷が大きくなってしまう部位があるため、外装材には軽量で断熱性が高く吸音性もあり不朽もしない炭化コルクにて外断熱を行い、熱負荷を低減することとした。(引用、グッドデザイン賞WEBページより)‘‘

■ Pollc in Charge

1; After the design of the building is completed, it is normal to perform various environmental analyzes to verify its performance, but this building uses parametric modelling from the initial stage of design to examine the shape and opening position of the building. rice field

2; Using a PMV prediction tool that also uses machine learning, we created and used a tool that designers can intuitively utilize in their designs (in collaboration with Takaaki Fuji).

3: IoT devices are installed and environmental factors are continuously recorded. One is to observe and evaluate the error between the value performed in the simulation and the measured value. The other was to predict the air age from CO2, etc., and to perform notifications for sufficient ventilation (in collaboration with HQLLC).

■ぽ担当箇所

1;建物のデザイン終了後、各種環境解析をおこないその性能を検証するのが通常の流れであるが、この建物は設計の初期段階からパラメトリックモデリングを使用し、建物形状・開口位置の検討を行った

ⅱ;機械学習を併用したPMV予測ツールを使い、設計者が直感的にデザインに生かせるためのツールを作り使用した (藤貴彰と協働)

ⅲ;IOTデバイスを設置し、継続的に環境要素を記録している。一つには、シミュレーションで行った値と実測値の誤差を観測し評価すること。もう一つは、CO2などから空気齢を予測し、十分な換気のためのノーティフィケーションをおこなった(HQLLCと協働)

1_UDI; Practical Daytime Illuminance Analysis /実用昼間照度解析

《Open space pocket = light window that lives in the natural light created by the garden》

It is a numerical value of the annual probability that the illuminance from 9:00 to 18:00 satisfies 100 to 2000 lx, and it said that you can spend comfortably. By making the above index as close to 100% as possible, the ratio of artificial light was reduced, and consideration was given to energy saving and carbon consumption. Usually, the lighting plan is made by adding artificial light and natural light.

《空地ポケット=庭が作る自然光で暮らす光窓》

9:00~18:00での照度が人が快適に過ごせるといわれている100~2000lxを満たす年間確率を数値化した図。なるだけ上記の指標を100%に近づけることによって、人工光の割合を低下させ、省エネ・カーボン消費などに配慮した。通常、人工光と自然光の足し合わせで、照明計画をする。

2_PMV; Thermal comfort index /PMV;温熱快適指標にもとづいた窓開け指示システム

《Window opening program that visualizes PMV (Expected Average Heat and Cooling Report)》

There is a typical thermal comfort index in building environmental engineering. As an element for environmental planning, it is possible to simulate light, heat, wind, etc., but by letting a computer machine learn the relationship between PMV (Predicted Mean Vote), which is a composite comfort index, and window opening. , You can know which window should be opened and how much to live comfortably at what time. Even after the building was completed, we developed a mechanism to improve the accuracy of the window opening program by actually measuring it with a sensor and giving feedback.

《PMV(予想平均温冷感申告)を可視化した窓開けプログラム》

建築環境工学にある代表的な温熱快適性の指標がある。環境計画ための要素として、光・熱・風等のシミュレーションが可能であるが、複合快適性指標であるPMV(Predicted Mean Vote)と窓の開度の関係性を、コンピュータに機械学習させることで、どの時期にどの窓をどの程度開ければ快適に暮らせるかを知ることが出来る。建物完成後も、センサーにて実測しフィードバックさせることで、窓開けプログラムの精度を高められるように仕組みを開発した。

3_CFD; Wind analysis, building surface pressure /風解析、建物表面圧力

《Wind pressure simulation》

The north wind is stochastically high in the year. Based on the pressure on the surface of the planned building, an opening will be provided from the north to northeast of the 3rd floor where the positive pressure is large (the wind will come in), and it will escape to the west side where the burden is heavy (the wind will come out). I proposed the flow.

《風圧シュミレーション》

年間では北風が確率的に高い。計画建物表面の圧力をもとに、正圧が大きい(風が入ってくる)3階の北~北東面にかけて風を取り込む開口を設け、負担が大きい(風が出ていく)西側へと抜ける流れを、提案した。



4_Thermal analysis by sunlight and building insulation analysis /太陽光による熱解析と、建物断熱解析

《Summer Solstice Building Temperature Analysis Map》

Insulation performance was guaranteed by using a unique material called carbonized cork. Summer in Japan is harsh, and in addition to the usual internal heat insulation, carbonized cork with a heat insulating property of 0.039 (W / m / K) is used as external heat insulation to prevent heat from entering the inside. Based on the analysis results, the carbonized cork was set to 50 mm thick.

(Left)without carbonized cork, (Right) with carbonized cork / (左)炭化コルクなし(右)炭化コルクあり

《夏至の建物温度解析図》

炭化コルクというユニークな素材を用いて、断熱性能を担保した。日本の夏は厳しく、通常の内断熱に加え、外断熱として0.039(W/m/K)の断熱性をもつ炭化コルクを用いて内部への入熱を防いでいる。解析結果を踏まえて、炭化コルクは50mm厚とした。



Analysis drawings are provided by POLLC, and buildings, photographs, etc. are provided by the client. Thank you very much.
※解析図はPOLLCの、建築物、写真などは、クライアントからの提供によります。ありがとうございました。